Cimatebabes Eurotour

This year we have been on tour around Spain and France and Belhium, visiting  Madrid, Barcelona, Valencia, Paris, Bruxelles (and Lille) ;-) You can find pictures here. Today we’ll be in Amsterdam for the peoples climate march.

Valencia, Spain

Nick Bostrom and Artificial Intelligence

As I was travelling recently I took the book of Nick Bostrom with me, mainly because Elon Musk commented on it. The book is called Superintelligence. It purports to analyse the future development of intelligence in humans or machines, attempting to cast light on the way intelligence will increase and how artificial intelligence will present itself.

I was interested in this more or less state of the art view, because once I was aware of the state of the art in artificial intelligence, working on neuromorphic networks simulating the effects of substances like emotional neuromodulation using computers. I learned about robotics, machine learning, neurophysiology and read everything that anybody published. There’s no science I read in his book until now that I don’t know about, actually there is quite some that Nick doesn’t appear to know.

The question of how intelligence will develop, how human level intelligence will come about and how intelligence will rise as that point is reached are fascinating. They seeom to be valid questions but to me Nick makes a number of shortcuts that make his analysis next to worthless. The most important ommision he makes is to define what intelligence is, or go into depth what an intelligence entails in the real world. Because he doesn’t analyse the way intelligence exists in our present world, nor proposes a definition of what intelligence is, he misses the opportunity to paint the alarming picture where it belongs, in the present, not at some point in the future.

Weapon systems use ‘intelligent’ targeting
As former expert (can’t say I am up to date right now) I have a simple definition of intelligence. It is Robust Goal Orientation. This assumes some locomotion or action as wel, so one could say Actioned Robust Goal Orientation, or ARGO. This is intelligence. An mechanism or organism that demonstrates ARGO has intelligence, maybe not human level intelligence, but the thing we would recognize as intelligence would be going on. This is one of the main points that puts Nicks analyses in the second row. His definition of intelligence is whatever we think it is, and as humans this is likely antropomorphic. This would be fine if we knew what is essential to antropomorphic intelligence. The strongest argument say being a human (organism) shapes our intelligence to a high degree (quite a redundant assertion). Nick Bostrom doesn’t really consider the corporal aspect of his ‘intelligence’.

Nick starts with a review of past achievements in term of intelligence. His idea of intelligence here seems to be problem solving, like winning in a game. He states “Artificial intelligence already outperforms human intelligence in many domains” (p. 11) when applied to game playing computers. To me this statement has multiple flaws. First playing a game can count as goal oriented behavior, chess can be represented as a moves ‘tree’ search, the goal being the node of the tree where the computer wins. It is however usually extremely frail. It is an algorithm meaning it can only work one way. One faulty wire, memory block or software statement and there is no more goal orientation. Saying that such kind of ‘intelligence’ surpasses human intelligence can only be wrong, because humans can be boxing and still play chess at the same time. Robustness is an obvious feature of the human brain, it uses many more neurons than necessary in any task.

With the different examples of problem solving and game playing discussed in Nicks review of the state of the art Nick adopts the complaint that as soon as a computer solves a problem considered intelligent it is no longer seen as intelligent (John McCarthy). Without a proper notion of what intelligence is Nick does conjecture that natural language processing is a AI-complete problem. He borrows from the term NP-complete or nondeterministic polynomial-complete problems. These are problems that can’t be solved in polinominal time, meaning the duration necessary to solve them may explode with the problem size rendering them possibly unsolvable. Cryptography uses NP-Complete algorithms to make sure noone can find a shortcut to decryption. It sounds cool to say AI-complete, to mean it requires human level AI to be doable, but it means very little.

Language is commonly considered to be a key aspect of artificial intelligence. The famous Turing Test for artificial intelligence consists of a human and a machine connected through teletype (precursor to chatting online) and communicating with the test subject, and if the test subject can’t notice the difference between the text from the human or the machine the machine has reached human intelligence. This view of what intelligence is obviously ‘symbolcentric’, something Turing’s mind certainly was. Concluding AI through this means will run in robustness issues really quick, and validity is limted by the test subject’s own intelligence. We can define intelligence in this case robust orientation towards correct or acceptable language, where ‘orientation’ of language comes down to selecting the words to use, like picking a route in a maze. We percieve language output as intelligence if it robustly succeeds in being correct (relevant to the conversation) or acceptable (socially) to the tester. There is no machine that has done that yet, quite a number of humans struggle with it.

To understand intelligence as we posess it we should go back to the origins of it in the living world. The nervous system has a long developmental history first showing up in very tiny organism with a few of them, to eventually occur in humans, cows, elephants and chicken by the billions. The primary function of neurons is to make parts of the organism respond to something occuring at a distance from it. Neurons replace chemical diffusion, permeation of light or vibration penetrating to the part it connects to. Why? To quicken a response. Usually the goal of the response (which can be a construct of the observer or emergent) is to maintain homeostasis or survive.

Simple organisms won’t be considered intelligent if human-level intelligence is used as a bechmark. Bentic organism swim about in the sea and can find the light or darkness quickly, flee from stimuli but they can’t spell their name or solve puzzles. To me they are intelligent as they robustly orient towards their goals (stay in the dark may be one, stay away from disturbances which may eat them is another). Now if the number of goals one can orient towards simultaneously we start to see a way to put these organisms on a scale with humans. (to be continued)






Climate security

We are used to news that makes incremental changes to our reality. A new president, a 5-1 victory for the national team, inventions and wars, they all nudge reality in small way that can only prove their significance in due time. It has to do with the rate of change. If the rate is fast enough we are likely to notice, whether the change is significant to the underlying process or not.

Slow changes are hard to notice or respond to

The world adopted private central banking in a slow process that took place during the first half of the twentyieth century. Production and consumption in the western world became highly dependent on fossil fuels in the same time period (not by coincidence). These where fundamental changes to our lives we never really noticed. The difference is that in our daily change reveals itself as a repetition of similar events. Centralization and privatization of banking was a political process, without detailed interest all meetings and votes look the same. The introduction of every car, truck, diesel generator where steps in the direction of fossil fuel capture. Everyone first bought a gas powered frridge, then an electric one. The first laundromat may have been a sensation, the next billion wheren’t.

A record broken every day loses its news value

This is what makes climate change hard to report on. The changes are similar, they are repetitive. Species are in danger, they go extinct. It’s hotter than last year, every year. A drought, a flood, again, strange strong winter weather, dying fish, again and agian. This type of information doesn’t register. We want to learn about changes that have some immediate impact on our lives. Every time a new hundred year storm occurs it’s a hundred year storm, again. What can anyone do about it?

Another profound factor is generational renewal. Each generation accepts the reality they learn about the first time as a benchmark. Once there wheren’t any nuclear reactors, and many people protested. Now there are and new ones are nothing new. The pollution they cause f.i. in Fukushima has outraged those that understood the risk, but the new generation won’t know any better than that the pacific has heightened radioactivity. Without a significant change to the direct reality of people, they are not sensitive enough to respond.

Every child outgrowing the protection of its parents has to learn that not every man is a father, not every women a mother to them. So if the fossil fuel markteer / evangelist sufficiently reminds them of their parents they can dictate reality to them. That’s the difference between child and adult : enough private experiences to distrust the word of strangers. Religion, hiking a ride on this parental authority cause the most insane distortions of views of reality in the believers, some of which are designed to keep them captured by the specific thought system in question.

Just a good rule : Talk to everyone at least once

The media live of the capture the achieve of their audience. Fear is a great way to immobilize the audience. The active outgoing people don’t see a relation between TV news and their reality. The people that are passive enough to hang in front of a TV will be tought to keep watching it. It is not in the interest of the TV business to teach much usefull information, the medium is a vehicle for advertisement. It leverages peer pressure, like with the World Cup. You have to watch or not know what happened like everyone else. The root of this communal sacrifice of time and attention to the soccer experience is that these men represent the assumed soccer elite of our country. We come from our country, we have to watch! The subsequent struggle displayed demands respect, and victory is celebrated as personal. But the reason we do this is strictly commercial. The World cup is a marketplace where your attention is sold to the highest bidder (and people play soccer).




Schaliegas Debat

Gisteren vond in de tweede kamer een eerste debat tav schaliegas plaats. Veel partijen waren tegen om vele verschillende redenen. Het is de moeite waard de video te bekijken, de argumenten zijn begrijpelijk en de reacties geven een goed beeld van de partijen..

The CCS Paradox

Carbon capture and storage, it is the fossil fuel industry’s answer to demands for emissions reduction. CO2 is caught right at the chimney of a powerplant, compressed and stored in underground caverns. Some imagine a market for CO2, as for instance greenhouses can use CO2 as fertilizer (often gas is burned to generate it).

The choice for using CO2 for CCS (which spans Carbon capture and storage, not CO2 capture and storage) is made because it is the shortest path to pretending to prevent CO2 emissions. It has the lowest cost in terms of energy extracted from fossil fuels (although it needs to be filtered out and compressed). Cost however is a vague term in the fossil fuel sector. Prices are always kept at a level that keeps powerplants running, unless the coal and gas really run out.

The strange thing is that CO2 capture is about the only way we are supposed to believe we can capture carbon. But what about coal, gas, oil, plastic. Capturing hydrocarbons makes more sense to begin with, burning fossil fuels didn’t only create massive amounts of CO2, but also of H2O, So much H2O was formed it will add to the sealevel rise. The paradox is that our economy can’t handle true carbon capture and storage when it is involves synthesizing hydrocarbon fuels. It views that as making fuel! It views that as competing with fossil fuels in the energy market!

The CO2 problem could be attacked (maybe not solved competely) by building solar driven hydrocarbon synthesis factories in the Sahara desert, far form the civilized world. The installations would cover a couple of hundred miles by a couple of hundred miles, they’d be gigantic, but they would do the job. There would be no lack of energy to build them, because they’d be making gigatons of fuel. They could be producing at several times the rate of our present oil and gas wells.

This is the CCS paradox : In doing it right you will outproduce the fossil fuel sector, yet you will not need to burn the fuels you make because you have renewable sources to live on. You will have a carbon fuel storage problem. Where are you going to leave the oceans of oil you may generate?

The fossil fuel sector doesn’t need to store CO2 from burning coal, it needs to find its ‘reverse’. It needs to start building the next generation Power to Gas (followed by Gas to plastic for storage) and other synthetic fuel plants. It is totally feasible. It is totally within their expertise and they can afford it, they should embrace the opportunity because if done right it would give them a lasting existence until renewables are so a bundant nobody really needs to work anymore…

The thing difficult to express is that when people think about reducing emissions, 10%, 15%, 80%, that’s all fine, but they really need to be -200%. Also the targeting 0% emissions by installing renewables is really modest considering there is not just 1 fossil fuel equivalent to be generated using the sun, but 2250. We could be 2250 times more wealthy than we are today..


The systems for power to gas, power to NH3, power to methanol, plastic or oil that have already been build now seem to offer a small contribution to the fossil fuel pool. This economic framing obviously hinders the rollout of these technologies. As we have explained banks, getting most of their revenue from fossil fuel use (directly and indirectly) make the new technologies compete with fossil fuels, which are costless to the producer. This is why we came up with the term ‘extraeconomics’ to mean the creation of resources that are not available to the wider economy, that are therefore preserved and accumulated.

We imagine that CCS through the synthesis of fossil fuel equivalents has to be done extraeconomically. The bases where CCS is done this way have to be independent, protected like a plantation against robbers. Investment in them has to be direct, not credit based etc. etc. Once one can think of a initiative that does CCS by making plastic with sunlight for instance, extraeconomically, it is possible to see how this plastic will pile up in the middle of the desert or somewhere on the bottom of the ocean and just stay there. The potential for our planet to produce extraeconomical is gigantic, abundance however is not ‘economic’.

Leave a solar panel in the desert with a peltier cooling based watermaker for 30 years, come back and you’ll find a forrest,with inhabitants. This is also CCS..

The fossil fuel industry can really help with this work, it won’t because obviously it wants us to think capturing and storing CO2 is a good idea. We need to go beyond fighting symptoms, and build the cure. All the technology needed exists today, so tell them to do it, or tell politicians to do it : Break the paradox and get real about CCS.







Dual Carbon Batteries

Since the introduction of ultracapacitors a new type of battery entered the scene. An Ultracapacitor, being a capacitor with a much bigger ability to store electric charge, is in fact a type of battery.

The way an ultracapacitor stores more power is by using electrolyte, like in a battery. But unlike in a battery, the voltage is always kept to low to cause actual chemical reactions. In a normal battery a chemical reaction frees electrons on the negative side, and accepts them on the positve side. In an ultracapacitor only the orientation of the molecules changes,so the positive electrode gets surrounded by the negative side of the molecule, and the negative electrode by the positive side of the molecule. This increases the amount of charge one can store in the electrodes immensly. The molecules that orient would like to spring back to chaos, and this is they way energy is stored.

Ultracapacitor capacity can be increased by increasing the surface area of the electrodes, so more molecules can hug up against them. This is not easy with metals, so a foamy lead electrode would not work, because the lead dissolves and accumulates back and would not keep its shape. A lead acid battery is thus limited in its efficiency. A better lead acid battery can be made by using one electrode made of activated carbon. Activated carbon is carbonized organic material that has had a special heat treatment causing it to become enormously porous, having a very large surface area. A few pellets can have the surface area of a footbal field. Activated carbon is reactive, and because a chemical reaction depends on the apparend concentration of reagens, its large surface area causes any chemical to be neutralized by it.

Activated carbon
Carbon is also a reasonable conductor. So activated carbon electrodes are very promising to increase the capacity of ultracapacitors and batteries. One challenge is to keep the carbon connected to the output part of the battery. Otherwise there would be many ‘stranded’ grains of activated carbon not adding to the output of the battery. One way to change this is to try to grow nanowires. Another way is to use organic material that are already thin and fibrous, like cotton.

Battery with carbonized activated cotton electrodes has to use an electrolyte that does not react with the electrods. It might have to be an ultracapacitor, but it could also use an electrolyte with two stabile molecules that could switch back and forth based on charge added or removed. Apparently this is possible with Litium, which in Lithium-Ion batteries forms a complex with Oxygen. It can also react with Oxygen, so it could burn, but in the batteries it doesn’t. It seems the Double Carbon Batteries use the same reaction, only without the oxygen, but with carbon. The positive Lithium ions simply stick to the positive electrode as electrons are taken from it during chargeing.

The cost of these batteries could be very low. Based on Lithium they would be designed for use in cars, extending the range to 300 miles for cars that now reach 100 miles. With other chemistry/electrolytes they could be even cheaper. Manufacturing can also be replicated easily. The only challenge is restrictive royalties and fianceing of production plants. But with a thought out design it can mean cheaper electricity storage, enabling more renewable energy use and less investment in wastefull centralized electricity production and infrastructure.






The Ultraconsumer

Every citizen of the western world has been under pressure to become a consumer. You may have a job, so you may feel productive, but at home it is most appreciated if you just go to the supermarket and shopping mall, load you house with consumer goods, yourself with a mortgage and other debt, so you are a predictable part in the grander economic scheme. This scheme wants to maximize the utilization of fossil fuels, and that is all it wants.

It may be a genetic thing that people do like to create value on their own. This is fine as long as it doesn’t lead to a drop in consumption, so you can make a few bookshelves, but they won’t look as good as Ikea stuff, you may make jam at home, but it will have to be regulated. Every activity that makes people less dependent is fought by businesses that earn their living of this dependency, and the biggest business is the fossil fuel business.

Basic income

Enter the concept of basic income. The European social system meant that if you lost your job it would be better to give you money to maintain a certain standard of living than to let you become destitute and unfit for any work. This was affordable after WO II due to the abundant fossil fuel resources. Recently this social system has come under pressure, exactly because fossil resources have come under pressure. Now that there’s Arctic oil and other alternatives to revive the fossil fuel streams one could imagine that the social thought revives as well, after all, any cashflow is good for banks and the fossil fuel sector, whether it is ‘earned’ or not.

Basic income also answers the question “If you build a machine that does the work of everyone,is everyone jobless with no money to buy what the machine produces? Or do they share in what’s being produced for free?” This is the basic question that was never asked during the industrialization of the last century, which is about to go in to hyperdrive with 3D printing and other new technology.

The basic question of automated production is whether whatever makes the machine work should thus be given away in the form of what is produced. If the machine uses oil and produces shoes, what price should the shoes be if nobody can earn money to pay this price (because of automation). Can the oil be given away? Of course we have seen a century in which oil has been given away in ever increasing quantities, that is why people where so prosperous and labour was so light, credit so cheap. Do you see how it was given away? Can you make oil?

A basic income to buy goods made by machines consuming fossil fuels (directly or indirectly), or at least products resulting from a largly automated production cycle, makes sense. It would make the most sense if the energy used came from renewable sources. This is the Roboeconomic concept, robots do most of the work, the ecology is restored because renewable energy is used, and nobody has to sweat for their basic needs. Society will focus on cultural differentiation, style and quality. That is the scenario with renewables, energy sources that have many first owners in a society that cut out intermediaries (the tax office creates credit based on renewable energy capacity and gives it to the energy source owners).

To do the same with fossil fuels the economy would look a lot like the one we have today, only be even more like a monoculture. Obviously fossil fuels are scarce and efficiency is a constant focus of attention (not the case with renewables, they are abundant). This means we need to all have the same culture, wear the same clothes and shoes, at least if we want to live of a basic income, a stipend from Shell, Exxon, BP etc. probably wrapped in a moral argument for the good of everyone.

The problem is that this could be pushed by the fossil fuel lobby, just to secure their dominance and to turn the semiconsumer or even a prosumer back into an ultraconsumer, a truely dependent person that fully depends on fossil fuels to live, hence without any political will or ability to cut the dependency.

Renewables would free people of such a dependency because they make it possible to produce what is needed without having to ask anybody. And if fossil fuel interest would push for a basic income they would surely prevent their ultraconsumers to own renewable energy sources. The do that now, but then they would have enough power to push through a law that says : If you produce energy, it is deducted from your income.

We already live in this society, in which a large portion of the population create very little or nothing that other people need. But it would be a devious thing if fossil fuel interests started to push for a basic income. It would be even harder to get rid of them. With a basic income in place they could push ahead with automation (as they have to increase efficiency to prolong their dominance) turning more people into hyperconsumers. Neutralizing the ‘downside’ of poverty in a move to cause more people to become poor. This would be a downwards spiral because fossil resources deplete. On the way down people would have to be ‘shedded’ from the system.

Maybe suspecting this strategy seems illogical, but if it did come about it would mean another generation would mis the true abundance and colorfull society enabled by a basic income from renewable energy, which has a wealth capacity of several thousand times the one afforded by fossil fuels. So beware, don’t let ‘fossil fuel socialism’ lock you in a hopeless ultraconsumer role..





What data is being gathered about you?

The below companies will have to be summoned to delete their databases.

Companies involved Acxiom, Corelogic, Datalogix, eBureau, ID Analytics, Intelius, PeekYou, Rapleaf, and Recorded Future.

Identifying Data

• Name
• Previously Used Names
• Address
• Address History
• Longitude and Latitude
• Phone Numbers
• Email Address



Sensitive Identifying Data

• Social Security Number
• Driver’s License Number
• Birth Date
• Birth Dates of Each Child in Household
• Birth Date of Family Members in Household



Demographic Data

• Age
• Height
• Weight
• Gender
• Race & Ethnicity
• Country of Origin
• Religion (by Surname at the Household Level)
• Language
• Marital Status
• Presence of Elderly Parent
• Presence of Children in Household
• Education Level
• Occupation
• Family Ties
• Demographic Characteristics of Family Members in Household
• Number of Surnames in Household
• Veteran in Household
• Grandparent in House
• Spanish Speaker
• Foreign Language Household (e.g., Russian, Hindi, Tagalog, Cantonese)
• Households with a Householder who is Hispanic Origin or Latino
• Employed – White Collar Occupation
• Employed – Blue Collar Occupation
• Work at Home Flag
• Length of Residence
• Household Size
• Congressional District
• Single Parent with Children
• Ethnic and Religious Affiliations



Court and Public Record Data

• Bankruptcies
• Criminal Offenses and Convictions
• Judgments
• Liens
• Marriage Licenses
• State Licenses and Registrations (e.g.,Hunting, Fishing, Professional)
• Voting Registration and Party Identification



Social Media and Technology Data

• Electronics Purchases
• Friend Connections
• Internet Connection Type
• Internet Provider
• Level of Usage
• Heavy Facebook User
• Heavy Twitter User
• Twitter User with 250+ Friends
• Is a Member of over 5 Social Networks
• Online Influence
• Operating System
• Software Purchases
• Type of Media Posted
• Uploaded Pictures
• Use of Long Distance Calling Services
• Presence of Computer Owner
• Use of Mobile Devices
• Social Media and Internet Accounts including: Digg, Facebook, Flickr, Flixster, Friendster, hi5, Hotmail, LinkedIn, Live Journal, MySpace, Twitter, Amazon, Bebo, CafeMom, DailyMotion, Match, myYearbook,, Pandora, Photobucket, WordPress, and Yahoo



Home and Neighborhood Data

• Census Tract Data
• Address Coded as Public/Government Housing
• Dwelling Type
• Heating and Cooling
• Home Equity
• Home Loan Amount and Interest Rate
• Home Size
• Lender Type
• Length of Residence
• Listing Price
• Market Value
• Move Date
• Neighborhood Criminal, Demographic, and Business Data
• Number of Baths
• Number of Rooms
• Number of Units
• Presence of Fireplace
• Presence of Garage
• Presence of Home Pool
• Rent Price
• Type of Owner
• Type of Roof
• Year Built



General Interest Data

• Apparel Preferences
• Attendance at Sporting Events
• Charitable Giving
• Gambling – Casinos
• Gambling – State Lotteries
• Thrifty Elders
• Life Events (e.g., Retirement, Newlywed,Expectant Parent)
• Magazine and Catalog Subscriptions
• Media Channels Used
• Participation in Outdoor Activities (e.g., Golf, Motorcycling, Skiing, Camping)
• Participation in Sweepstakes or Contests
• Pets
• Dog Owner
• Political Leanings
• Assimilation Code
• Preferred Celebrities
• Preferred Movie Genres
• Preferred Music Genres
• Reading and Listening Preferences
• Donor (e.g., Religious, Political, Health Causes)
• Financial Newsletter Subscriber
• Upscale Retail Card Holder
• Affluent Baby Boomer
• Working-Class Moms
• Working Woman
• African-American Professional
• Membership Clubs – Self-Help
• Membership Clubs – Wines
• Exercise – Sporty Living
• Winter Activity Enthusiast
• Participant – Motorcycling
• Outdoor/Hunting & Shooting
• Biker/Hell’s Angels
• Santa Fe/Native American Lifestyle
• New Age/Organic Lifestyle
• Is a Member of over 5 Shopping Sites
• Media Channel Usage – Daytime TV
• Bible Lifestyle
• Leans Left
• Political Conservative
• Political Liberal
• Activism & Social Issues



Financial Data

• Ability to Afford Products
• Credit Card User
• Presence of Gold or Platinum Card
• Credit Worthiness
• Recent Mortgage Borrower
• Pennywise Mortgagee
• Financially Challenged
• Owns Stocks or Bonds
• Investment Interests
• Discretionary Income Level
• Credit Active
• Credit Relationship with Financial or Loan Company
• Credit Relationship with Low-End Standalone Department Store
• Number of Investment Properties Owned
• Estimated Income
• Life Insurance
• Loans
• Net Worth Indicator
• Underbanked Indicator
• Tax Return Transcripts
• Type of Credit Cards



Vehicle Data

• Brand Preferences
• Insurance Renewal
• Make & Model
• Vehicles Owned
• Vehicle Identification Numbers
• Vehicle Value Index
• Propensity to Purchase a New or Used Vehicle
• Propensity to Purchase a Particular Vehicle Type (e.g., SUV, Coupe, Sedan)
• Motor Cycle Owner (e.g., Harley, Off-Road Trail Bike)
• Motor Cycle Purchased 0-6 Months Ago
• Boat Owner
• Purchase Date
• Purchase Information
• Intend to Purchase – Vehicle



Travel Data

• Read Books or Magazines About Travel
• Travel Purchase – Highest Price Paid
• Date of Last Travel Purchase
• Air Services – Frequent Flyer
• Vacation Property
• Vacation Type (e.g., Casino, Time Share, Cruises, RV)
• Cruises Booked
• Preferred Vacation Destination
• Preferred Airline



Purchase Behavior Data

• Amount Spent on Goods
• Buying Activity
• Method of Payment
• Number of Orders
• Buying Channel Preference (e.g., Internet, Mail, Phone)
• Types of Purchases
• Military Memorabilia/Weaponry
• Shooting Games
• Guns and Ammunition
• Christian Religious Products
• Jewish Holidays/Judaica Gifts
• Kwanzaa/African-Americana Gifts
• Type of Entertainment Purchased
• Type of Food Purchased
• Average Days Between Orders
• Last Online Order Date
• Last Offline Order Date
• Online Orders $500-$999.99 Range
• Offline Orders $1000+ Range
• Number of Orders – Low-Scale Catalogs
• Number of Orders – High-Scale Catalogs
• Retail Purchases – Most Frequent Category
• Mail Order Responder – Insurance
• Mailability Score
• Dollars – Apparel – Women’s Plus Sizes
• Dollars – Apparel – Men’s Big & Tall
• Books – Mind & Body/Self-Help
• Internet Shopper
• Novelty Elvis



Health Data

• Ailment and Prescription Online Search Propensity
• Propensity to Order Prescriptions by Mail
• Smoker in Household
• Tobacco Usage
• Over the Counter Drug Purchases
• Geriatric Supplies
• Use of Corrective Lenses or Contacts
• Allergy Sufferer
• Have Individual Health Insurance Plan
• Buy Disability Insurance
• Buy Supplemental to Medicare/Medicaid
Individual Insurance
• Brand Name Medicine Preference
• Magazines – Health
• Weight Loss & Supplements
• Purchase History or Reported Interest in Health Topics including: Allergies, Arthritis, Medicine Preferences, Cholesterol, Diabetes,
Dieting, Body Shaping, Alternative Medicine, Beauty/Physical Enhancement, Disabilities, Homeopathic Remedies, Organic Focus, Orthopedics, and Senior Needs